Existence of Mean Curvature Type Flow with A Potential


主题:   Existence of Mean Curvature Type Flow with A Potential主讲人:   郑高峰地点:   松江校区2号学院楼331理学院报告厅时间:   2018-05-25 09:30:00组织单位:   理学院




In this talk, we study the parabolic Allen-Cahn equation, which has slow diffusion and fast reaction, with a potential K. In particular, the convergence of solutions to a generalized Brakke’s mean curvature flow is established in the limit of a small parameter ε → 0.More precisely, we show that a sequence of Radon measures, associated to energy density of solutions to the parabolic Allen-Cahn equation, converges to aweight measure of an integral varifold. Moreover, the limiting varifold evolvesby a vector which is the difference between the mean curvature vector and thenormal part of K/2K.

报告主持:陶有山 教授

视频:   摄影: 撰写:陶有山  信息员:唐晓亮  编辑:孙庆华



友情链接:33219   25128   14759   1934   23480   50699   29132   8732   16939   20328   35880   29470   12128   2578   38306   91140   11076   44   25671   3225